SpringCache

介绍

Spring Cache是一个框架,实现了基于注解的缓存功能,只需要简单地加一个注解,就能实现缓存功能,大大简化我们在业务中操作缓存的代码。

Spring Cache只是提供了一层抽象,底层可以切换不同的cache实现。具体就是通过CacheManager接口来统一不同的缓存技术。CacheManager是Spring提供的各种缓存技术抽象接口。

针对不同的缓存技术需要实现不同的CacheManager:

CacheManager 描述
EhCacheCacheManager 使用EhCache作为缓存技术
GuavaCacheManager 使用Google的GuavaCache作为缓存技术
RedisCacheManager 使用Redis作为缓存技术

注解

在SpringCache中提供了很多缓存操作的注解,常见的是以下的几个:

注解 说明
@EnableCaching 开启缓存注解功能
@Cacheable 在方法执行前spring先查看缓存中是否有数据,如果有数据,则直接返回缓存数据;若没有数据,调用方法并将方法返回值放到缓存中
@CachePut 将方法的返回值放到缓存中
@CacheEvict 将一条或多条数据从缓存中删除

在spring boot项目中,使用缓存技术只需在项目中导入相关缓存技术的依赖包,并在启动类上使用@EnableCaching开启缓存支持即可。

例如,使用Redis作为缓存技术,只需要导入Spring data Redis的maven坐标即可。

入门程序

接下来,我们将通过一个入门案例来演示一下SpringCache的常见用法。 上面我们提到,SpringCache可以集成不同的缓存技术,如Redis、Ehcache甚至我们可以使用Map来缓存数据, 接下来我们在演示的时候,就先通过一个Map来缓存数据,最后我们再换成Redis来缓存。

环境准备

1). 数据库准备

将今天资料中的SQL脚本直接导入数据库中。

image-20210822230236957

2). 导入基础工程

基础环境的代码,在我们今天的资料中已经准备好了, 大家只需要将这个工程导入进来就可以了。导入进来的工程结构如下:

image-20210822225934512

由于SpringCache的基本功能是Spring核心(spring-context)中提供的,所以目前我们进行简单的SpringCache测试,是可以不用额外引入其他依赖的。

3). 注入CacheManager

我们可以在UserController注入一个CacheManager,在Debug时,我们可以通过CacheManager跟踪缓存中数据的变化。

image-20210822231333527

我们可以看到CacheManager是一个接口,默认的实现有以下几种 ;

image-20210822231217450

而在上述的这几个实现中,默认使用的是 ConcurrentMapCacheManager。稍后我们可以通过断点的形式跟踪缓存数据的变化。

4). 引导类上加@EnableCaching

在引导类上加该注解,就代表当前项目开启缓存注解功能。

image-20210822231616569

@CachePut注解

@CachePut 说明:

​ 作用: 将方法返回值,放入缓存

​ value: 缓存的名称, 每个缓存名称下面可以有很多key

​ key: 缓存的key ———-> 支持Spring的表达式语言SPEL语法

1). 在save方法上加注解@CachePut

当前UserController的save方法是用来保存用户信息的,我们希望在该用户信息保存到数据库的同时,也往缓存中缓存一份数据,我们可以在save方法上加上注解 @CachePut,用法如下:

/**
* CachePut:将方法返回值放入缓存
* value:缓存的名称,每个缓存名称下面可以有多个key
* key:缓存的key
*/
@CachePut(value = "userCache", key = "#user.id")
@PostMapping
public User save(User user){
    userService.save(user);
    return user;
}

key的写法如下:

​ #user.id : #user指的是方法形参的名称, id指的是user的id属性 , 也就是使用user的id属性作为key ;

​ #user.name: #user指的是方法形参的名称, name指的是user的name属性 ,也就是使用user的name属性作为key ;

​ #result.id : #result代表方法返回值,该表达式 代表以返回对象的id属性作为key ;

​ #result.name : #result代表方法返回值,该表达式 代表以返回对象的name属性作为key ;

2). 测试

启动服务,通过postman请求访问UserController的方法, 然后通过断点的形式跟踪缓存数据。

image-20210822233438182

第一次访问时,缓存中的数据是空的,因为save方法执行完毕后才会缓存数据。

image-20210822233724439

第二次访问时,我们通过debug可以看到已经有一条数据了,就是上次保存的数据,已经缓存了,缓存的key就是用户的id。

image-20210822234105085

==注意: 上述的演示,最终的数据,实际上是缓存在ConcurrentHashMap中,那么当我们的服务器重启之后,缓存中的数据就会丢失。 我们后面使用了Redis来缓存就不存在这样的问题了。==

@CacheEvict注解

@CacheEvict 说明:

​ 作用: 清理指定缓存

​ value: 缓存的名称,每个缓存名称下面可以有多个key

​ key: 缓存的key ———-> 支持Spring的表达式语言SPEL语法

1). 在 delete 方法上加注解@CacheEvict

当我们在删除数据库user表的数据的时候,我们需要删除缓存中对应的数据,此时就可以使用@CacheEvict注解, 具体的使用方式如下:

/**
* CacheEvict:清理指定缓存
* value:缓存的名称,每个缓存名称下面可以有多个key
* key:缓存的key
*/
@CacheEvict(value = "userCache",key = "#p0")  //#p0 代表第一个参数
//@CacheEvict(value = "userCache",key = "#root.args[0]") //#root.args[0] 代表第一个参数
//@CacheEvict(value = "userCache",key = "#id") //#id 代表变量名为id的参数
@DeleteMapping("/{id}")
public void delete(@PathVariable Long id){
    userService.removeById(id);
}

2). 测试

要测试缓存的删除,我们先访问save方法4次,保存4条数据到数据库的同时,也保存到缓存中,最终我们可以通过debug看到缓存中的数据信息。 然后我们在通过postman访问delete方法, 如下:

image-20210823000431356

删除数据时,通过debug我们可以看到已经缓存的4条数据:

image-20210823000458089

当执行完delete操作之后,我们再次保存一条数据,在保存的时候debug查看一下删除的ID值是否已经被删除。

image-20210823000733218

3). 在 update 方法上加注解@CacheEvict

在更新数据之后,数据库的数据已经发生了变更,我们需要将缓存中对应的数据删除掉,避免出现数据库数据与缓存数据不一致的情况。

//@CacheEvict(value = "userCache",key = "#p0.id")   //第一个参数的id属性
//@CacheEvict(value = "userCache",key = "#user.id") //参数名为user参数的id属性
//@CacheEvict(value = "userCache",key = "#root.args[0].id") //第一个参数的id属性
@CacheEvict(value = "userCache",key = "#result.id")         //返回值的id属性
@PutMapping
public User update(User user){
    userService.updateById(user);
    return user;
}

加上注解之后,我们可以重启服务,然后测试方式,基本和上述相同,先缓存数据,然后再更新某一条数据,通过debug的形式查询缓存数据的情况。

@Cacheable注解

@Cacheable 说明:

​ 作用: 在方法执行前,spring先查看缓存中是否有数据,如果有数据,则直接返回缓存数据;若没有数据,调用方法并将方法返回值放到缓存中

​ value: 缓存的名称,每个缓存名称下面可以有多个key

​ key: 缓存的key ———-> 支持Spring的表达式语言SPEL语法

1). 在getById上加注解@Cacheable

/**
* Cacheable:在方法执行前spring先查看缓存中是否有数据,如果有数据,则直接返回缓存数据;若没有数据,调用方法并将方法返回值放到缓存中
* value:缓存的名称,每个缓存名称下面可以有多个key
* key:缓存的key
*/
@Cacheable(value = "userCache",key = "#id")
@GetMapping("/{id}")
public User getById(@PathVariable Long id){
    User user = userService.getById(id);
    return user;
}

2). 测试

我们可以重启服务,然后通过debug断点跟踪程序执行。我们发现,第一次访问,会请求我们controller的方法,查询数据库。后面再查询相同的id,就直接获取到数据库,不用再查询数据库了,就说明缓存生效了。

image-20210823002517941

当我们在测试时,查询一个数据库不存在的id值,第一次查询缓存中没有,也会查询数据库。而第二次再查询时,会发现,不再查询数据库了,而是直接返回,那也就是说如果根据ID没有查询到数据,那么会自动缓存一个null值。 我们可以通过debug,验证一下:

image-20210823002907048

我们能不能做到,当查询到的值不为null时,再进行缓存,如果为null,则不缓存呢? 答案是可以的。

3). 缓存非null值

在@Cacheable注解中,提供了两个属性分别为: condition, unless 。

condition : 表示满足什么条件, 再进行缓存 ;

unless : 表示满足条件则不缓存 ; 与上述的condition是反向的 ;

具体实现方式如下:

/**
 * Cacheable:在方法执行前spring先查看缓存中是否有数据,如果有数据,则直接返回缓存数据;若没有数据,调用方法并将方法返回值放到缓存中
 * value:缓存的名称,每个缓存名称下面可以有多个key
 * key:缓存的key
 * condition:条件,满足条件时才缓存数据
 * unless:满足条件则不缓存
 */
@Cacheable(value = "userCache",key = "#id", unless = "#result == null")
@GetMapping("/{id}")
public User getById(@PathVariable Long id){
    User user = userService.getById(id);
    return user;
}

==注意: 此处,我们使用的时候只能够使用 unless, 因为在condition中,我们是无法获取到结果 #result的。==

4). 在list方法上加注解@Cacheable

在list方法中进行查询时,有两个查询条件,如果传递了id,根据id查询; 如果传递了name, 根据name查询,那么我们缓存的key在设计的时候,就需要既包含id,又包含name。 具体的代码实现如下:

@Cacheable(value = "userCache",key = "#user.id + '_' + #user.name")
@GetMapping("/list")
public List<User> list(User user){
    LambdaQueryWrapper<User> queryWrapper = new LambdaQueryWrapper<>();
    queryWrapper.eq(user.getId() != null,User::getId,user.getId());
    queryWrapper.eq(user.getName() != null,User::getName,user.getName());
    List<User> list = userService.list(queryWrapper);
    return list;
}

然后再次重启服务,进行测试。

image-20210823005220230

第一次查询时,需要查询数据库,在后续的查询中,就直接查询了缓存,不再查询数据库了。

集成Redis

在使用上述默认的ConcurrentHashMap做缓存时,服务重启之后,之前缓存的数据就全部丢失了,操作起来并不友好。在项目中使用,我们会选择使用redis来做缓存,主要需要操作以下几步:

1). pom.xml

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-cache</artifactId>
</dependency>

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>

2). application.yml

spring:
  redis:
    host: 192.168.200.200
    port: 6379
    password: root@123456
    database: 0
  cache:
    redis:
      time-to-live: 1800000   #设置缓存过期时间,可选

3). 测试

重新启动项目,通过postman发送根据id查询数据的请求,然后通过redis的图形化界面工具,查看redis中是否可以正常的缓存数据。

image-20210823010810680

image-20210823010742530

缓存套餐数据

实现思路

前面我们已经实现了移动端套餐查看功能,对应的服务端方法为SetmealController的list方法,此方法会根据前端提交的查询条件进行数据库查询操作。在高并发的情况下,频繁查询数据库会导致系统性能下降,服务端响应时间增长。现在需要对此方法进行缓存优化,提高系统的性能。

具体的实现思路如下:

1). 导入Spring Cache和Redis相关maven坐标

2). 在application.yml中配置缓存数据的过期时间

3). 在启动类上加入@EnableCaching注解,开启缓存注解功能

4). 在SetmealController的list方法上加入@Cacheable注解

5). 在SetmealController的save和delete方法上加入CacheEvict注解

缓存套餐数据

代码实现

1). pom.xml中引入依赖

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-cache</artifactId>
</dependency>

==备注: spring-boot-starter-data-redis 这个依赖前面已经引入了, 无需再次引入。==

2). application.yml中设置缓存过期时间

spring:  
  cache:
    redis:
      time-to-live: 1800000 #设置缓存数据的过期时间

3). 启动类上加入@EnableCaching注解

image-20210823232419408

4). SetmealController的list方法上加入@Cacheable注解

在进行套餐数据查询时,我们需要根据分类ID和套餐的状态进行查询,所以我们在缓存数据时,可以将套餐分类ID和套餐状态组合起来作为key,如: 1627182182_1 (1627182182为分类ID,1为状态)。

/**
* 根据条件查询套餐数据
* @param setmeal
* @return
*/
@GetMapping("/list")
@Cacheable(value = "setmealCache",key = "#setmeal.categoryId + '_' + #setmeal.status")
public R<List<Setmeal>> list(Setmeal setmeal){
    LambdaQueryWrapper<Setmeal> queryWrapper = new LambdaQueryWrapper<>();
    queryWrapper.eq(setmeal.getCategoryId() != null,Setmeal::getCategoryId,setmeal.getCategoryId());
    queryWrapper.eq(setmeal.getStatus() != null,Setmeal::getStatus,setmeal.getStatus());
    queryWrapper.orderByDesc(Setmeal::getUpdateTime);

    List<Setmeal> list = setmealService.list(queryWrapper);

    return R.success(list);
}

测试

缓存数据的代码编写完毕之后,重新启动服务,访问移动端进行测试,我们登陆之后在点餐界面,点击某一个套餐分类,查询套餐列表数据时,服务端报错了,错误信息如下:

image-20210823233406888

image-20210823233514356

==为什么会报出这个错误呢?==

因为 @Cacheable 会将方法的返回值R缓存在Redis中,而在Redis中存储对象,该对象是需要被序列化的,而对象要想被成功的序列化,就必须得实现 Serializable 接口。而当前我们定义的R,并未实现 Serializable 接口。所以,要解决该异常,只需要让R实现 Serializable 接口即可。如下:

image-20210823233904520

修复完毕之后,再次重新测试,访问套餐分类下对应的套餐列表数据后,我们会看到Redis中确实可以缓存对应的套餐列表数据。

image-20210823234146526

清理套餐数据

代码实现

为了保证数据库中数据与缓存数据的一致性,在我们添加套餐或者删除套餐数据之后,需要清空当前套餐缓存的全部数据。那么@CacheEvict注解如何清除某一份缓存下所有的数据呢,这里我们可以指定@CacheEvict中的一个属性 allEnties,将其设置为true即可。

1). 在delete方法上加注解@CacheEvict

/**
 * 删除套餐
 * @param ids
 * @return
 */
@DeleteMapping
@CacheEvict(value = "setmealCache",allEntries = true) //清除setmealCache名称下,所有的缓存数据
public R<String> delete(@RequestParam List<Long> ids){
    log.info("ids:{}",ids);
    setmealService.removeWithDish(ids);
    return R.success("套餐数据删除成功");
}

2). 在save方法上加注解@CacheEvict

/**
 * 新增套餐
 * @param setmealDto
 * @return
 */
@PostMapping
@CacheEvict(value = "setmealCache",allEntries = true) //清除setmealCache名称下,所有的缓存数据
public R<String> save(@RequestBody SetmealDto setmealDto){
    log.info("套餐信息:{}",setmealDto);

    setmealService.saveWithDish(setmealDto);

    return R.success("新增套餐成功");
}

测试

代码编写完成之后,重启工程,然后访问后台管理系统,对套餐数据进行新增 以及 删除, 然后通过Redis的图形化界面工具,查看Redis中的套餐缓存是否已经被删除。